If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+64x-2112=0
a = 2; b = 64; c = -2112;
Δ = b2-4ac
Δ = 642-4·2·(-2112)
Δ = 20992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20992}=\sqrt{256*82}=\sqrt{256}*\sqrt{82}=16\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{82}}{2*2}=\frac{-64-16\sqrt{82}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{82}}{2*2}=\frac{-64+16\sqrt{82}}{4} $
| (x2−22)=(6x+5) | | -2|z+8|=-6 | | 32=4(j+4) | | 3(2x+4)−x=27 | | t/6–40=47 | | 4(n+1)+2n=24 | | d+35/6=-4 | | 10(d+2)=90 | | 2(2x+4)+3(3x-2)=41 | | h+25/10=6 | | n^2-n-5=-2n^2 | | 25=c/5+18 | | 10+4f=26 | | 5c^2+7c+1=2c | | |y-6|+6=9 | | 6/5w=24 | | c^2-15c+13=-6c | | b^2+9b+7=-6 | | 6=t+12/7 | | 7m-15=52 | | x+1,15x=4,87 | | 4(x+2)=x+2 | | -0.82930983286=46/x | | (2.5y-2.3=-9.8 | | 0.05n+0.25=8 | | |2m+3|+5=14 | | |2m+8|+5=14 | | 7(4w+10)/3=-9 | | -10(s+5)=-124 | | 16x-12=900 | | 5(3s+2)=100 | | 5(2l+4)=70 |